Task 5 researchers publish article on the microbial ecology of IASBR systems treating dairy wastewater

Task 5 researchers based at University College Cork have been working with Task 2 researchers to perform molecular analysis to determine microbial community structures in the IASBR systems.

Title: Dominance of the genus Polaromonas in the microbial ecology of an Intermittently Aerated Sequencing Batch Reactor (IASBR) treating dairy processing wastewater under varying aeration rates

Authors: Beatriz Gil-Pulido, Emma Tarpey, William Finnegan, Xinmin Zhan, Alan DW Dobson and Niall O’Leary.

Journal: Journal of Dairy Research

DOI: https://doi.org/10.1017/S0022029918000572

Abstract

In this Research Communication we investigate potential correlations between key bacterial groups and nutrient removal efficiency in an Intermittently Aerated Sequencing Batch Reactor (IASBR) treating synthetic dairy processing wastewater. Reactor aeration rates of 0·6 and 0·4 litre per minute (LPM) were applied to an 8 l laboratory scale system and the relative impacts on IASBR microbial community structure and orthophosphate (PO4-P) and ammonium (NH4-N) removal efficiencies compared. Aeration at 0·6 LPM over several sludge retention times (SRTs) resulted in approximately 92% removal efficiencies for both PO4-P and NH4-N. Biomass samples subjected to next-generation sequencing (NGS), 16S rRNA profiling revealed a concomitant enrichment of Polaromonas under 0·6 LPM conditions, up to ~50% relative abundance within the reactor biomass. The subsequent shift in reactor aeration to 0·4 LPM, over a period of 3 SRTs, resulted in markedly reduced nutrient removal efficiencies for PO4-P (50%) and NH4-N (45%). An 85·7% reduction in the genus level relative abundance of Polaromonas was observed under 0·4 LPM aeration conditions over the same period.

Congratulations to Bea and all co-authors for their second publication.